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I. INTRODUCTION

Gimbal mounted telescopes carried on orbiting
spacecraft are subject to structural deformation produced
by attitude perturbations of the spacecraft if the telescope
is not located at the spacecraft center of gravity.* The
spacecraft will ordinarily have an attitude control system
for limiting the effect of the principal environmental
disturbances, however this system will usually be inadequate
to fully cope with rapid internal disturbances such as those
arising from crew motion. The resulting structural defor-
mation of the telescope is doubtless quite small, but it
may be of significance for high accuracy systems with pointing
requirements more stringent than 0.1 arc seconds.

The dynamic distortion of a prismatic beam used to
support a telescope is determined here for an extreme crew
motion disturbance, i.e. an astronaut impulsive translation
at the maximum distance from the spacecraft center of mass.
The spacecraft, assumed to move as a rigid body, experiences
a linear angular displacement which reaches a limit value at
the time the astronaut reaches the opposite wall.

Timoshenko beam theory is employed to determine the
distortion. The improvement which may be obtained by providing
translational decoupling between the telescope beam and the
spacecraft with a spring is included in the analysis.

The Laplace transformation is used for both space
and time variables. The behavior of the two space eigenvalues
are sketched on a closed contour in the s plane** around a
typical cut. Although many of the functions have branch points,

* F. G. Allen has suggested that this effect may be
important. :

**The normalized time transform variable.
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the integrand of the inversion integral is single valued
and the residue theorem may be applied without integrating
around branch cuts. A proof is offered that all Timoshenko
beams of finite length enjoy this important property. A
prior argument to this effect is felt to be deficient.*

It was found that for cases of strong translational
decoupling the response is dominated by the static deflection.
Static is a misnomer but it conveys well the idea that the
beam response to very low frequency forcing functions, well
below the lowest beam natural frequency, may be calculated
using static principles. The load is of course the inertial
loading of the beam mass. Once this was recognized it was a
simple matter to include point mass loads, which is a welcome
extension.

II. TIMOSHENKO BEAM DYNAMICS

In this section the response of a uniform prismatic
beam is determined for an applied force at the center. Point

mass loads are not considered. The Timoshenko(l) model includes
the effects of rotary inertia and shear distortion. The
development of the Timoshenko theory has been marked by some
error and controversy. Some of this interesting history and

a bibliography is given in Appendix A.

The notation and the evaluation of the shear

.coefficient are taken from Cowper.(z) The Timoshenko
equations are:
30 32w
(a) —= + p = pA —
0Z 3t2
M 2
() 3% -0=o1 %
at
(1)
3¢ _
(c) EI = - M
aw -9
(d) 52 * ¢ = mc

*See pg. 15.
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Notation:

el
|

N oM Qm E R
|

Mb -

Mt -

Z2(z,s)

I

a

Mean deflection of cross section

Mean angle of rotation of a cross section about
neutral axis

Total transverse shear force acting on a cross
section

Total transverse load per unit length applied to
beam

Bending moment acting at any cross section of beam
Cross sectional area
Modulus of elasticity
Force spring exerts on beam
Shear modulus
Area moment of inertia
Shear coefficient
Total mass of beam
Point mass at end of beam
- Transfer impedance of beam
(2/2) V;j%? - Limiting transit time for waves on
the half beam
VE;:. - One of two limiting velocities. Other is
AT, -
- [ variation of nth mode of 6n+(c,T)
- ¢ variation of nth mode of 6¢+(c,r)
Spring constant
Beam length
Normalized space transform variable
Normalized time transform variable
Time
Time for ramp function to reach value X

Heaviside unit step function.

Displacement of spacecraft at gimbal
Displacement of spacecraft in time tl.

Distance along axis of beam
Mass density of beam
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W = nth normalized natural circular frequency of beam
9, = 2ﬂfb = 1/a

Qbs = \/k/Mt = 21rfbS - Circular frequency of rigid telescope
spring system

Normalized Variables

£ = F/(KAG)
T = t/a
= 2xv/2
gm = 2xm/l
n = 2w/%
z = 22/%
dn = n(g,t) - n(l,1) - Disthtion index
¢ = o(g,T) - Distortion index
M ™ ]6n+(O’T)|maX
64)+m'= I6¢)+(0'T)|max

Dimensionless Parameters

™, = E/(KG)
W, = 4I/(aL?)
2 2
o= 2 BB (-z-?—) = (?—-)
bs bs
Subscripts
Plus (+) and minus (-) on forcing or response

functions refer to the corresponding positive or negative
ramp functions of Figure 2.

A single bar over a variable indicates the time
transform; two bars indicate time and space transforms.
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Figure 1 is a schematic of the beam and the
elastic coupling to the spacecraft.

X
I
S £ >
pdl P
HE /L_ TELESCOPE SUPPORT BEAM
/)- F //‘
y GIMBAL
SPRING
1
xv
Y SPACECRAFT REFERENCE

FIGURE |

It is assumed that the attitude variations of the spacecraft
may be considered as translational motion of the gimbal.
Further, since these motions occur in a time small compared
to the orbital period, the orbital motion may be neglected
and the spacecraft and telescope considered nominally at rest.

The method employed divides the beam at the center,
z=2/2, and considers one half of the spring force applied as
a shear load to each side of the beam. The problem is thus
reduced to the homogeneous condition with p(z,t)=0 and the
following boundary conditions for the left half of the beam:

z=0; 36/32=0, %—YZ’— + =0
(2)
2=1/2; $ =0, CLAP |

@
N
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Eliminating M and Q from Equations (1), one

obtains
2 2
(a) oa &YW - xac (XH 4+ 28 -
ot 32 0z
(3)
2 2
) o133 -r1 2% i xac (¥ 4 ¢) = 0
Bt 32 32

as coupled equations in w and ¢.

Introducing the dimensionless parameters and
normalized variables defined in the notation yields, for
Equations (3),

(@ 7 21 - 2o
ot 3¢ 9L
(4)
2 2
] 9
(b) Ty Ty ai"'ﬂ'l'ﬂ'z—%'*'—ﬂ"'d)—o
dT RS 9T
with boundary conditions
= 0; 9 - 3n =
t=0; g - 07 oz v =0
(5)
= 1; - an = £
C"ll ¢—0I ac+¢“‘2
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The time and space transforms used are

(6) n(g,s) = e ®T n(z,1)dr
and
(7) n(r,s) = e % T (z,s)dg

with similar relations for ¢.

The beam is considered to be initially at rest.
Transform Equations (4) and (5) with respect to t to obtain

2 -
(a) m,s’w(c,s) - dnlees) _ delzss) = g
dg? dc
(8)
2= -
() my1,8%F(z,8) - mym, S0Les) , ANlE8) g5y = o
dg dg

(a) ac(o,s) = 0; ;c(o,s) + ¢(0,8) =0
(9)
(b) 3(1,8) = 0; n,(1ss) + $(1rs) = fés’

and the ¢ subscript indicates the corresponding derivative.

Transform Equations (8) with respect to ¢ using
boundary conditions (9a) to obtain
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(ry8?2 - r2) n -1 =-rn(0,s)
(10)
r = 1l = _ l - e
(G0 + (s2 = r2 + ) ¢ = ) n(0,8) - re(0,s)
Equations (10) are solved for 7 and 3 to yield
S(r,s) = r(r?-s?)n(0,s) - r2%(0,s)
D(r)
(11)
_ (s2/15)n(0,8) + r(r2-mys2)4(0,s)
¢ (r,s)=
D(r)
where
(12) D(r) = xr* - (m1+1)s82r2 + (82/7m,) (l+nymys2)
= (r?-r?) (r?-r?)
1/2
(13) r; = [(s/z) {(w1+l) s +-\fon1—1)2s2 - 4/7, }J
1/2
(14) r, = E(s/2) ((ﬂ1+l) s —'V(Trl—l)zs2 - 4/n2:}J

The properties of r, and r, as functions of s are

given in Appendix B.
‘The unknown constants n(0,s) and E(O,S) are evaluated

using the boundary conditions (9b) after first inverting
Equations (11) relative to r. Either the inverse transform
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+o

(15) Tn(z,s) = zij et T (r,s)dr

C=je
with ¢ real, positive, and larger than real part of all

roots of D(r) or tables may be used to determine

n(z,s) and ¢(z,s). The inversion of n(z,s) and ¢ (z,s) involve
terms

-1 1 1 1 . 1 .
L = —- sinh r.z - == sinh r_¢
D(r) 2.2 {rl 1 r 2}
(ry rz) 2
- r
L 1 5ET = : 2} 2 {cosh r,c - cosh r2;}
17t
(16)
-1 r?2 _ 1 . _ .
L 5y = 27-27) {rl sinh rlc r, sinh rzg}
ri=r;
-1 3 1 ] 2 2
= h - h
L 5(E) 2227 {rl cosh r.z r; cos rzg}
1 ~2

where L™! indicates the inversion process of (15).

The inversion of Equations (11), using relations
(16), gives

1

2.++2
(r{ r2)

n(z,s) {%I(EJS)E(O,S) + Hl(c,S)E(O,SE}

(17)

s (z,s) 1
: (rﬁ-rg)

{%2(¢,S)E(O,S) + H2<c,s)$(o,s£}
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where
- 2. a2 - 2 a2
Gl(g,s) (r1 s4) cosh rlg (r2 s4) cosh r,t
Hl(z;,s) = --{:r1 sinh r.z - r, sinh rzg}
(18)
G (z,s) = (s2/r ) { = sinh r.¢ - —= sinh r.z
27 2 r, 1 r 2
2
"
- - 22 - 2 a2
Hz(z;,s) = {(r2 s<) cosh r,zc (r1 s<) cosh rzc)

The symmetry of Equations (18) has been enhanced
by the use of the relation

r2 + r2 = (¢ + 1)s?
1 2 1

from Equation (12).

Introducing n,(1l,s) and ¢(1,s) from Equations (17)
into boundary conditions (9b) gives*

(r2-r?)B, (s)

n(0,s) 7 §(s) f(s)
(v (£2-r2)a_(s) _
$(0,s) = - ) 5(s) f(s)
Substituting n(0,s) and $(0,s) from (19) into (17)
gives

*Az(s), B, (s) and S(s) are defined on p. 1l.
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(a)

(20)
(b)

where

(a)
(b)

(c)

(21) (&)
(e)
(£)

(9)

n(z,s)

¢(z,s)

P(z,s)
R(¢,s)
S(s)
A, (s)
B, (s)
A, (s)

Bz(s)

- 11 -

Gl(;,s) Bz(s) - Hl(;,s) Az(s)

= GZ(E,S) Bz(s) - Hz(g,s) Az(s)

III. TRANSLATIONAL

A {(s) B (s) - A (s) B_(s)
1 2 2 1

rl(r%—sz)sinh r, - r, (r%—sz) sinh r,
—{r% cosh r, - r% cosh rz}

-G, (1,s)

-Hz(l,s)

DECOUPLING - RESPONSE TO ASTRONAUT IMPULSIVE

TRANSLATION

So far the analysis has been developed for an applied

force at the center of the beam. The results may be easily
extended to include the effect of the decoupling spring. The
spring force F(t) is related to the displacements by

F(t) =k {xv(t) - w(g/2,t)}

or, in normalized variables

(22)

2w1
f(r) = - {}(T) - n{(l,t)
3
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Transform Equation (22) with respect to t and employ
Equation (20a) to obtain

-:-% ni1,s) + EE) % E(s)
(23)

n(l,s) - z(1,s) ’—555) =0,
where

2(c,s) = n(c,s) _ P(z,s)
£(s) /2 S(s)

is the mechanical transfer impedance of the half beam.
From Equations (23)

s) E(s)

(
2 T Z(1,s8) + (wa/w1)

(24) £

Substitute E(s)/z from (24) into (20) to obtain

(a) nlg,s) =%‘%—S—')S—)— £ (s)
(25)
- R(Crs) -
¢$(g,s) = —"— g(s)
(b) Q(s)
where
(26) Q(s) = P(1,s) + (w3/w1) S(s)



BELLCOMM, INC. - 13 -

It is necessary to determine £ (s) for the prescribed
spacecraft displacement. Figure 2 indicates the spacecraft
rigid body motion resulting from an astronaut impulsive
translation. As explained previously, such a translation
maneuver results in an angular perturbation of the spacecraft
which, for present purposes, may be considered as a
translation at the spring.

x, 0 x,. (1) x, (0

Figure 2

A convenient method of dealing with the function of
Figure 2 is to consider it made up of two ramps functions

(27) X = xv+(t) + Xv_(t)
where
x (t) = x E u(t)
v+ ‘tl
(28) xv_(t) = —xv+(t—t1)

u(t) =0 , £<0
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The corresponding response functions are

n({g,1) = n+(C,T) +n (z,1)

(29)

o(g,t) = ¢ (gr1) + ¢ _(g,1)
where

n_(gy1) = -n_ (g,1-1)

¢ _(zy1) = -¢ (g,11))

Normalizing xv+(t), one obtains

e (1) = (£ g

which has a time transform

(30) B0 = (&) =2

The response functions are given by
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ctije
1 st T
(@) n, (g,7) = 33 e®" n, (z,s)as
c-j=
(31)
ctje
1 st
() o, (z,1) T3 e’ ¢, (¢g,s)ds
c-je

It is shown in Appendix B that the integrands of (31)
are single valued for beams of finite length and the residue
theorem may therefore be used.* The singularities are simple
poles on the imaginary s axis, where

Q(s) =0 i s #0

It may be shown that

lim P s =1

s>0  Q(s)
and

. 3 2
lim R(g,s) _ (1-g°) s°
s-0 Q(s) 31 T,

With these results, and using Equations (25) and
(30) , Egquations (31) may be written

*Leonard and Budiansky(l6)claim that this conclusion follows
from the uniqueness of the solution to the differential equation.

This reason appears inadequate in view of the fact that infinite

beam problems do have multiple valued integrands(5’10).
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, = P(z,ju)
(@) n (2,1 =(2) Egr-23 (R £n )~ sin o
n=1 “n Q (an)
(32)
= R(z,ju_)
. n .
(b) ¢+(C,T)= —ZJ(E—al—)gmz T sin o 1
n=1 “n Q (]mn)
where
Sp = Jup
is nth root of
Q(s) =0
and
"s _ do(s)
Q (Jmn) - Tds s=jwn
Distortion
Two measures of telescope distortion are defined:
én(g,t) = nlzg,t) ~ n(l,T)
(33)

solzc,t) = ¢(g,1) — ¢(1,1) = ¢(z,7)
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Iv. APPROXIMATION FOR STRONG DECOUPLING

As might be expected, Equations (32) can be much
simplified if

where 0, is the frequency of the rigid body beam-spring mode

and w, is the first natural frequency of the beam.

Let
6n+(C,T) =& (Fa_) Z dn(c) sin W T
I n=1
(34)
So,(c,1) = £ () ) e (c) sin u
1 -1
where
P(z,jw.) =~ P(1l,jw.)
d () = ~23 — n
wn2 Q' (Fu,)
(35)
R(z,jw.) - R(1,juw)
e (1) = -2j n n

wnz Ql (jwn)

s
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Figures (3) and (4) plot the error in the peak
distortion, using the first term in the series (34),

dl(o)
Abnym = 1= g
(36) )1: d, (0)
el(O)
A6¢+m = 1- 10
Z e, (0)
1

where the summation is limited to ten terms.* The dashed
lines show that the error in using the first term is dependent
on (mz/wl) for the 16:1 range of T, considered. The effect of

™ will be shown later to be small so that these plots may be
taken as indicative of the region in which the rigid-body
frequency dominates the distortion.

The distortion indices for strong decoupling are
therefore

= a ,
Sn (cot) = & (tl) d, (z) sin w T
(37)
8¢, (z,1) = £ () e (¢) sin
o Ny m t1 1 wt
Expanding about s=0, one obtains, from (18) and (21)
1 1
P(z,s) = (u 2-1122)[—1 + ((?‘_Z)(‘C“ - §-C-,— + 1)= zpln c2+41) } 2

*Data for Figures (1) and (2) are from a computer program.
Ten terms are more than adequate for engineering accuracy.
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1

(38) R(z,s) (u

[ 271,2) () () (1-¢3) 82
: 2

It

- 2. 2ya2
S(s) wl(u1 u, )s

Substituting from Egquations (38) into the characteristic
equation

T3
p(l,s) + (;—) S{(s) =0
1

(39) Q(s)

one finds

1

1 V‘E’

which is exactly the rigid body frequency.

Setting s=juw, in Equations (38) using Equations (35)

gives, for =0

d, (0)

It
§| -
[94]

Mooy
ey
N
+
I\JI e
|

(40)

1
e. (0) = (=)
1 31! ™, ;;’H3

Q' (jwl) is obtained from Egquation (39).

- The total distortion indices, considering the positive
and negative ramp functions, for ¢=0, >0, are
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§n(0,t) = gm(g—) dl(O) {sin W, T - U(T—Tl)Sin u)l('r-'rl)}

1
(41)

§¢(0,1) = Em(gi) 81(0) {%in w T u(T_Tl)Sin wl(T~T1{}
1

These approximations turn out to be identical with
results obtained using static principles. 1In this method the
beam is presumed to be subjected to a uniform inertial load
which is due to the vibration at the frequency w, . The

calculation is extremely simple and direct.*

V. POINT MASS LOAD - STRONG DECOUPLING

The static method may be used to determine the
distortion for the case of strong decoupling. The results

are
a,(0) = —= sz_l_{_qu}ur e {3+8y}
V Tl',_‘_ ’"2
(42)
e (0) = Lt [1 + 3«{]
Gﬁz qu
where
Y e M
/2 M,

These results are for a mass Mt at each end of the

beam and a total beam mass of Mb. The terms dl(O) and el(O)

play the same role as the corresponding expressions in
Equations (41).

From Equations (42), the point mass loads produce 2
to 2 2/3 times the deflection and 3 times the plane rotation
of the equivalent beam mass.

*preston Smith carried through the static analysis both
for this case and for the results given in Section V which
includes equal point mass loads at the ends of the beam.
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VI. NUMERICAL RESULTS

The parameter ranges of interest, derived in
Appendix C, are summarized here.

= E/KG
The range is

2.33 < my o< 6.76

for cross sections with symmetry about x and y axes. Computer
runs were normally made for values 2.0, 4.0, 6.0 and 8.0 which
bracket the range.

T, 41/242

Again restricting consideration to cases with
X and y axis symmetry, the range is

1/4 (d/8)2 < < 2/3 (d/2)?

where d is maximum dimension normal to z axis.

1,_=(4/2) (EA/K)

This parameter is an approximate index of decoupling

since
2
TT3 = (Qb/gbs)
— 2
where
Qb = 2nfb = 1/a
Qbs= \/k/Mb

The parameter w, is not a precise index of decoupling
since 2 is not an eigen-frequency of the beam in bending.
However, increasing Tar for constant beam parameters, does

lower fbs and hence increase decoupling.
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The lower limit on frg MaY be set in one of two
ways. Clearly

£ > 1/T

bs

where T is the orbital period. As fbs is reduced, gravity-

gradient will induce larger amplitude periodic motion which
must be accommodated. In consequence of these considerations
there is an upper limit on T, which must be determined for a

practical design. Thus

<
3 i 3max

There appears to be adequate range for T, to provide

all of the decoupling desired without getting into design
extremes.*

End/t)

It is not necessary to treat these quantities
parametrically since the results may be presented as a ratio
of én and &§¢ to (a/tl) gm. However, to obtain an estimate of

distortion, values of these parameters are required.

For a vehicle the size of the Apollo Applications
Program Orbital Workshop, using a rigid body model and
conservation of angular momentum, it is possible to show that

X
Em <.1 inch/sec.
1

with a peak excursion which is less than 1 inch. This estimate
is based on a worst case astronaut translation from one side of
the Workshop to the other at the maximum distance from the mass
center at a velocity of 3 ft./sec. '

*This subject will be developed by J. Schindelin in a
forthcoming memorandum.
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For the aluminum beam example of Appendix C

2X X
1 m 2 1 m
() £ = (=) (—2) = (£) (=) ()
t1 m thl 2 2 Q§ #1
_ =2 1
= 10 ) (ygEe) D
= ,5 x 10°°6

Distortion

A computer program was developed to compute én
and 6¢. Some results from this program are given here for
the case of no decoupling. The distortion extremes

10

dn

__im  _ Zm (0) |

gma/t1 n
1
10

$¢im

=R WINC)
1

are given in Tables I-IV for

n, = 2.0, 4.0, 6.0, 8.0

T = .0025, .01, .04
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The tables also give the branch point locations and
the first ten natural frequencies.

From Tables I-IV, it is found that

1.4 x 10-6 < 5 x 10~°6

< 8nim

0.5 « 8oy < 240, secs. of arc

= -6
for (a/tl) Eq, = 0.5 x 107°,

It is adequate to deal with én, and §¢, in this
instance since the beam frequencies are iarge compared to
(1/t1) and the maximum will occur before the effect of the

negative ramp function is felt. Note that the effect of L

on the distortion is slight.

Numerical results for strong decoupling, obtained
from Equations (40) and (41), show for n3=10”,

-6 -6
.02 x 10 < 6n+m < «27 x 10

.0041 < 6¢+m < .069 secs. of arc

= -6
for (a/tl)gm 0.5 x 107°,

This value of w3 is relatively modest since it

requires
£
-f-?- = 100
bs
or
fbs = ,01 fb
= 3,2 Hz

for the example beam of Appendix C.
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Further reduction in 6n+m and 6¢+m can be made by

increasing L The falloff will go as Ty instead of T, for

£ << l/tl,

bs

the additional reduction coming from sin w, T in Equation 37

since ®, decreases as n3 increases.

By way of reference, the sgring travel for a natural
frequency of 3.2 Hz is about 4 x 10~° inches due to gravity-
gradient in low earth orbit. The amplitude increases as

(l/fbs)2 so there is considerable latitude for reducing £, _

before spring travel becomes troublesome.

VII. CONCLUSIONS

The pointing degradation of the telescope to structural
distortion can be inferred by examining §¢. This parameter
controls the change in orientation of one end of the beam, the
probable location of the major optical element, since in this
model the beam center does not rotate.

1. For large spacecraft, of the size of the Apollo
Applications Orbital Workshop, worst case crew
motion impulsive translations can lead to values
of 8¢, and hence to variations in telescope pointing
directions, of from 0.5 to 2.0 seconds of arc.
These values assume no point mass loading and cover
a fairly wide range of material and geometrical
variations. These estimates may be increased several
times if actual, i.e. point mass, loads are considered.
In any case these values are large compared to stability
requirements of 0.1, or less, seconds of arc.

2. Translational decoupling of the telescope and its
support structure from the spacecraft offers one
approach for reducing the effects of crew motion
on pointing stability to negligible proportions,
even below 0.01 seconds of arc.
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APPENDIX A

Timoshenko Beam Analysis

Timoshenko beam theory occupies the middle ground
between the classical, Euler-Bernoulli theory, and the exact
but relatively intractible formulation of elasticity theory.
An excellent account of the evolution of the Timoshenko theory

(3)

and a discussion of its merits is given by Mindlin.

Both travelling wave(3—10) and modal analyses(ll—13)
have been used for the solution of problems. The choice depends

on the nature of the problem. Mindlin(3) gives an elegant proof
that the Timoshenko equations, in the absence of distributed
loads, reduce to a set of wave equations.

In this paper the modal method is the appropriate
formulation since the time of wave propagation over the beam
length is small compared to the duration of the excitation.
The load is considered as a shear boundary condition. This

method was used erroneously by Uflyand.(z) Dengler and Goland(3)
pointed out Uflyand's boundary conditions are incompatible. They
do not identify the error, however, but avoid it by adopting the
method which treats the load as an applied § function on a
continuous beam.

Miklowitz(G) returns to the boundary condition method.

He uses a formulation of the Timoshenko equations that treats

the total deflection as the sum of bending plus shear components
as

y=yb+ys
The shear deflection is defined as

Yo = 9¢/02

Miklowitz claims advantages of simplicity (he means

algebraically) plus less chance of pitfalls with the difficult
boundary conditions. "
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The algebraic advantages may be real in some problems.
They did not prove so in the problem treated here.

The boundary condition advantage is not a real one.
Miklowitz has an error of a factor of 2 in his boundary
condition, Equation 13,where he writes

ays(olt) S(0,t)

ox k'A,G

and S(0,t) is the shear load at x=0. This should read S/2 for

S. Miklowitz's result, Equation (16), is in error by the same
factor and does not check Dengler and Goland's result as asserted.

Dengler in his discussion of Miklowitz's paper claims
that it may be demonstrated without difficulty that

Yx(olt) =0

The demonstration is not given. Miklowitz in his
closure objects, and rightly, since the Dengler condition is
clearly wrong.

In view of the prior difficulty with the shear
load treated as a boundary condition at a cut, it has seemed
useful to review the history. The difficulties appear to
stem from a lack of recognition of the discontinuity of the
derivative, 3w/3z in the notation of this paper,at the cut.
Thus the load is considered to be equally divided between
the two halves of the beam.
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Ped o)

(a) (b)

o

FIGURE (A-1)

In (b) above the shear load F/2 is applied to the
right hand face of the left half beam and

Everyone agrees that ¢(2/2,t)=0, or be(O,t)=O in

the notation of the coupled equations, so there is no difficulty
on that score.
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APPENDIX B

This Appendix considers two matters:

1. Branch points of r;(s) and r,(s), and

2. Proof that the integrand of the final inversion integral
is single valued for beams of finite length.

Branch Points of r, (s)

This function defined in Equation (13) as

| 1/2
ri(s) = [(s/2) {(r+1)s +'\/(n1-1)2s2—4/n2}3

has three branch points all of order 1/2. They are

(a) s =0
(B-1)
(b) s =tc) =+ —2
('ﬂ'l_l) 'IT2
where c, is real and positive. The branch points at +c,; come

from the zero of the radical internal to the brackets {}.

Near s=0

(B-2) ry(s) =

Near s = c; , let sy =8 ~c; ; s=5;+c; ; |s;|<<c
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then
(B-3) ry(s;) = \/ 1+ ﬂ1+1 \/ =
(B-4)

=1, + 2 Vs,

with a similar result near =Cj.

Figure (B-1l) below shows the correspondence between
the r,(s) and s planes on a contour surrounding a suitable cut.

The cut in the s plane runs from -c; to +c; along the real s
axis.

'
E D N\C B El 1 ' 8
7\ N\ A D C
\\J? G H |\~/’ ;“\\\5__—”””ﬁ;/~A\!:\\\\\-_‘///r<Av
i

S PLANE rl(S) PLANE

- F1GURE B-1
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Branch Points of r,(s)

This function, from Equation (14),

2
r,(s) = [(3/2)'{(n1+1) s - V&nl-l)z 52 - 4/n2}J]/

has five branch points, all of order 1/2. They are

(a) s =0

(B-5) (b) s = +c, = +

2
- - (Trl_l) V'ﬂ'z
(c) s =+ e, = +3/Ymmy

where ¢, and c, are real and positive. ¢, has the same value

as in Equation (B-1b) as it originates from the same source.

c, is associated with the zero of the brackets'{}l/z.
Near s=0
.3/21/'
(B-6) ro(s) = lz__-_i = ;\zo\ls
V T2
Near s = ¢; , again let s; = s - ¢ ; |s;|<<cy
then

. "‘/'n1+l (wl'—l)z-‘,Zsl 1
rz(sl) = C3 ) {l - 1/2 1T1+l Cl J
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(B-7) ro,(s;) = rq;(s;) - Aoa V 51

with again a similar result near -Cc, .

Near s = jc,, let s, = s-jc,; 1521<<Cz

then
~ [ de2 jea(my=1)s, ) |1/2
(B=8)  ry(s,) = | () § (11+1) (sp+jcy) - A(L+ - )
A

where

_ 2 2

A2 = (my-1)  (jc,) - 4/7,

Using Equation (B-5c¢), one finds

(B-9) r,(s,) = 1,,Vs,
where

_ je, (my-1)
rps =V3c,/2 {(nlfl) -2 }

A

Figure (B-2) shows the correspondence between r, (s)

and s planes on a contour surrounding a suitable cut. The cut
in this instance is a double one from -c; to +c; on the real

s axis and from -jc, to +jc, on the imaginary s axis.
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it

H E +iCy
DY

K J C B/ ™\

T W T ™/

L1t [
-¢ I
o(|)r -icy
PHLO
-jc,
S PLANE r, (S) PLANE

FIGURE B-2

The branches of rl(s) and rz(s) have been chosen
so that as

s >

(Ei) 1:1 (E;) - U ﬂ'l S

(b) r,(s) » s

In the light of this behavior at infinity, the reader
may be perplexed, as I was, at the behavior of r2(s) at s=c;.

How can the contour A'B' start to the left of r,, and still
retain rz(s)+s as s-+w?
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This effect can be explained with the aid of
Figure B-3 below.

BA~AZ~Y X, ~NH_ _V X NN LA
=N N o .
Cy G4 Cq ~ 71 u‘mrn
S PLANE r, PLANE
FIGURE B-3

There is a critical point* at

(B-11) s =c3 > C c3 real and positive

*A critical point is where r'(s)=0. At these points the
transformation r(s) is not conformal.
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on the real axis, and a corresponding point at s=-cz;. Given
Equation (B-10b) and (B-11l) it follows that there is a point

s = c5 > Cg

such that

r, (05) = Iy (Cl)

There are two additional critical points on the
imaginary s axis at

s = + jc, c, real and positive

where

Cy < €2

as indicated in Figure (B-2).

An interesting property of r,(s) is evident in
Figure (B-2). For those cases where

Q(s) =0

has roots in range

- jc, < 8 < + jo,

r, (s) will have real values. Outside this range r, (s) is always

imaginary for s imaginary. Thus beoth hyperbolic and trigonometric
functions appear simulataneously and this condition exists in the

problem studied here. Some of the cases discussed by Huang(lB)

fall into this category as well.



BELLCOMM, INC. B-8

Integrand of Inversion Integral is Single Valued for Beams of
Finite Length

The proof is based on the form of Equations (16).
All of the functions there are even in both r; and rp;. Since

the beam response is a linear combination of these functions,
it follows that the integrand of the inversion integral is
even in r; and rjp.

At the three points

s =0
and
s =+ 3¢,
As = As ;3 s =0
r{s) = AV As AS = s-C;i 8 = C;
As = s+cy; 8 = -Cy

where r stands for either r; or r, and A any of the proportionality

constants previously given for these points. It is clear that any
even function of r will behave as

Elr(s)] = a, + a; As

in the vicinity of these three branch points. These functions
are therefore single valued and the integrand is as well,.

The points

are more difficult. All the individual functions in r|y or r,

in Equations 16 do have branch points at s=+c;.
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Consider a typical term

{;osh rllg + All ‘Vsl sinh rllé}
{cosh rllg - 111 'Vsl sinh rll{}
211 Vs sinh r_ .t

1 1 11

e

cosh rlc—cosh rzc

using (B-4) and (B-7).

Also

Therefore

v
1 cosh rlc—cosh r,c¢ = 2; sinh r,,¢
(rf—r%) 11

Equations (16) all exhibit the same property and the points
s=tc, are therefore not branch points of the integrand of

the inversion integral.

In this proof that s=tc, are not branch points of the

integrand it has been necessary to have all of the four roots of
D(r)=0,

r = 4r (s), #r (s)

Discarding any of these roots, as for example is required
in infinite beam problems to satisfy the conditions at =, voids the

proof and such problems require integration around branch cuts(s'lo).
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APPENDIX C

Ranges of Dimensionless Parameters

n,_= E/KG

The range of the parameter 7. depends on K and v

1

E _
‘é- = 2(l+\))

where v is Poisson's ratio. From the formulae in Reference (2),

T, has been computed for a number of beam cross sections. The

results are shown in Table C-I.

Table C-I
R
v=0 v=,3 v=,5
Circle 2.33 2.93 3.33
Rectangle 2.40 3.06 3.50
Thin Walled Tube 4,00 4.90 5.50
Thin Walled Square Tube 4.80 5.96 6.76

*m=2; n=1; tF/tw=l.0 from Reference (2).

The corresponding values of K are given in Table C-II.
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Table C-II
K
\)=O V= e 3 V=Q5
Circle .857 .886 .900
Rectangle .833 . 850 .857
Thin Walled Tube .500 .531 .545
Thin Walled Square Tube L4117 .436 .444

Ty = 4I/A22

The following formulae apply to the indicated cross

sections.

circle T, = 1/4 (d/2)°
Rectangle T, = 1/3 (d/z)2
Thin Walled Round Tube T, = 1/2 (d/2)°
Thin Walled Square Tube m, = 2/3 (a/2)°

-Thus

1/4 (d/2) % < n < 2/3 (d/2)2

where d is maximum dimension normal to axis for which I is
computed.

If we assume that d<.25%, the maximum value of T, is
'"'Zmax = ,04
The limits of w, are thus

0<n2<.04
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my =

(4/2) (EA/K)

Let s designate the natural circular frequency of

the telescope spring system assuming the telescope to be rigid.

bs

= v k/Mb' where

M = pAL is beam mass
(4/2) (22

QbsMb

EA
2 )
Qp AL

(4/2) (

(1/a%) /9%

2
(2,/9, )

2
(£ /fp )

1/a.

As an example consider an gluminum beam with

Then
Q
T3
where Qb = 21rfb
which gives

200 inches
1071bs./sq.in.

2.47x10"" 1b.sec?/in!

320 'Hz,



